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Abstract 

The eikonal approach is applied to the problem of the scattering of electromagnetic 
waves from an excluded volume in the presence of a weak external potential. The scattering 
of electromagnetic waves is treated in the spinor formalism previously developed by the 
author. The excluded volume is eventually taken to be a perfectly conducting cone, the 
external potential a coating of thickness 3, with complex dielectric constant r and 
permeability/z (tacitly assumed equal to 1). It is shown that to order ( N -  1), where 
N =  (,'tO lt2, the eikonal approach in the spinor formalism yields results equivalent to 
those obtained from the vector theory of Oberall in the particular case of nose-on 
backscattering, using the eikonal function corresponding to 'straight-line propagation'. 

1. Introduction 

It  was shown in an earlier paper  (Roekmore,  1966) that  the problem of  
the scattering o f  high-frequency electromagnetic waves by weak dielectric 
bodies [in the eikonal approximat ion due to Glauber  (Baker, 1964)] could 
be handled rather elegantly in a spinor formulat ion o f  the electromagnetic 
field. Indeed a number  o f  complications encountered in the application o f  
Saxon-Schiff  (Uberall, 1962) theory to the vector wave equation for, say E, 

(V2 + k2)E = V V . E  + (1 - / ~ d )  k Z E - / ~ - 1 V ~  • (V x E), (1.1) 

were easily avoided in the eikonal approximat ion to the corresponding 
spinor wave equation, 

(~ - I,) ~ = k U ~  (1.2) 
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where 

with 

and 
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P = ms .  ( - i 7 )  (1.4) 

(1.5) U ~ - [ 1  - 1 t ~(~ + ~)] + p3 �89 - ~) 

using the notation of  Roekmore (1966). 
Since the Saxon-Schiffmethod has also been the basis for the development 

by Uberall (1964) of an approximation method for Calculating the diffraction 
of  electromagnetic waves in a situation where perfect conductors and weak 
scatterers (whose complex dielectric constant ~' and permeability/~ have 
magnitudes near unity) are present simultaneously, i.e. the problem of the 
scattering from coated perfect conductors, it may be of  some interest to 
extend the spinor formalism to this ease as well. For definiteness and in 
order to compare with the work of Uberall (1964) we also treat the semi- 
infinite, perfectly conducting and uniformly coated cone. [Moreover, for 
simplicity, our discussion is limited to the eikonal function corresponding 
to 'straight-line propagation,' ((Jberall, 1964) and to nose-on backseat- 
tering.] As there are no exact results with which to compare as in Rockmore 
(1966), we will emphasize the formal aspects of  the problem (Section 2) and 
be content to exhibit the equivalence of the two approache s to order 
( N -  1) (both in the amplitude and in the rapidly varying exponentials). 

2. Green's Theorem for the "Excluded Volume' in the Spinor Formalism 

In order to treat the scattering of electromagnetic waves in the spinor 
formalism in the situation outlined above, we take for the eikonal Green's 
function, 

~+)(r ,  r') = [/~ + k-~(p z - p2 + kZ)] (4~rlr _ r,i)-~ 
[r-r ' l  \ ]  ( ( r -  r') 

exp ik[r r'] + i f dskV\r '  
0 I* * t / J  

where 
V = ~tr U (2.2) 

(r r') satisfies the spinor equation, 

(p - k) fC~+)(r, r') = (p2 _ k 2) Fk(+)(r, r') 

= [(VS) 2 -- k 2 - i[r - r'lZV. (Jr - r']-2 VS)] F~+)(r, r ') 

+ 3(r - r') (2.3) 

with F~+)(r,r') defined by 

~+)(r,  r') = [p + k- l (p  z - p2 + k2)] F~+)(r, r') (2.4) 
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and S(r ,r ' )  by  
] r - r ' l  

0 

Since 
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(2.5) 

(/~ - k)  ~ + ) ( r ,  r') = {[ff~+)(r, r')] r ( j r  _ k ) }r  

= - {[~+)(r ,  r')] r (~ + k)} r (2.6) 

where T denotes matrix transpose, Green's  theorem takes the form here, 

- k ~ .I.(+)rra + [cGtk+)(r, r')] r (~ + k) ~b(k+)(r)} f dr{[C~+)(r,r')] T(/~ J~'~o ~ 
a 

= f dr [f#~+)(r, r')] r kU(r)  V'ko'l'(+)tra~, -- V'ko't'(+)t"~" J 

f dr[(VS) z - k s - i[r - r'l 2 V.  (It - r'[ -z VS)]  F~+)(r, r') (2.7) 

and leads to the integral equation for the spinor wave function ,t,(+)rr'a 'ffk o \ I~ 

~b<+>tr '~ = f dr[~+>(r,  r')] r kU(r)  k o k / 

f dr[(VS) 2 i]r - r ' [2V. (Ir - U r'~ ,l,(+)tr~ - -  - -  - -  ~ I ~ L ,  I j  k x , / Y ,  ko x / 

i f ds[~+)( r , r ' ) ]  r (+) + n~bko (r) (2.8) 
Soo+~Sij 

Li 

where it is already assumed that the domain ~ is divided into sub-domains 
~ (i = 0,1,2) with discontinuous values of  e',/z as in Ref. 5. Then S u is that  
surface between ~ and @ bounding ~ ,  with unit normal h~ pointing into 

Some additional reduction of  equation (2.8) is necessary before we can 
focus our attention on the specific problem of the nose-on backscattering 
from a semi-infinite, perfectly conducting cone (see Fig. 1) of  half-opening 
angle 0, and thus make contact  with the results of  Clberall (1964). Thus, 

i f (+) , r (+) dS[f9~ (r, r )] n ~  o (r) 
, d  

8 ~  

i f dS [~+)(r ,  r')] r nu(ko) exp (iko-r) 
S ~  

-ik / dS ikr i dskV(r' +hs) ( n - n  2) 
S ~  0 

x nu(Ro) exp (iko-r - ikh. r') (2.9) 
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where u(ko) = [- iEo/Ho] and  it is natural  to write, 

[ - iE0 ]  . . [ - i E s c ( k o ,  k ) ] e x p ( i k r )  
,I,(+)r . ) exp ( tko .r )  

J 
/ 

Region 'O'Reg i ~"/o~~.~,~~,,t / / ~ 

n 0 

Figure 1.--The semi-infinite, perfectly Conducting cone of half-opening angle 0 (region 
'2'), with coating of thickness 8 characterized by complex dielectric constant e' and 
permeability/~ (region '! '). The unit normal to the cone, ~, is also the unit normal, h21. 

Region '0' is free space (E' =/~ = 1). 

Since ko u(k0) = kno u(ko) = ku(k0), the surface integral at infinity reduces 
to 

i f -dSrf~C+~(rt k ~ ,r'~lrn'L(+~(r~JJ V'ko ~ J ~ exp i d skV(r"  - ~os )  U(ko)exp(iko-r ' )  
S ~  

(2.1ot 
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In the case of the coated, perfectly conducting cone (Fig. 1), one has 

~b' I--iE'~c] 
~c = [--~,~-[ - Wkod~(+)~r'~ J -- u(ko) exp (iko .r') 

L sr J 

i f dS [~{k+)(r, r')] T "wko~'"(+)~'r~,, 
So1+$1o+S12 

+ J" dr[~[+)(r, r')l r k U(r) ~b[+)(r) 
Vl 

+ _I drF[+)(r'r') [ (VS)  2 - k 2 - i[r - r'[ZV. ([r - r ' [ -2VS) ]  ~ o  {+~(r) 
Vl 

(2.11) 

and introducing one common unit normal h to all cone surfaces, assumed to 
point away from the body of the cone, one may write the contribution from 
the surface integrals of expression (2.11) as 

Surface contribution 

=- i  ~ dS[~+)(r,r')] r ~+) n[q% (r)]out,ido 
S'o1 

+ f ~<+) , r ~+) dS[ k ( r , r ) ]  n[~ko (r)]i.~iae 
Sol 

--  i f (+) , T (+) dS[fCk (r , r)]  n[~bko (r)]insiOe (2.12) 
t /  

S12 

For the reasons given earlier we content ourselves with the demonstration 
of  :the equivalence of the two eikonal approaches in this problem to order 
( N -  1) (both in the amplitude and the rapidly varying exponentials) for the 
case of nose-on backscattering (k = - k o ) .  Oberall's (1964) result, with 
which we are to compare, is 

H:~c(oo) = -(4rrr ')-I exp ( ikr ' ) l -~ dS~(fi x H) x V exp [i(ko . r +  8o)] 
K 

+ exp [i(ko.r + 8o)]t~ • (V • H) + k -z [h x (V • H)] 

�9 VVexp[i (ko ' r  + 3o)]~o"t~iao + f dS[(~ • H) 
8ol 

x V exp [i(k o-r + 3o) + exp [iO~o .r § 3o)] h • (V x H)~t.,ra~ 

f dS(h x H) • Vexp [i(ko.r + 3o) ] 
Sl2 

+ f drH.VV exp [i(ko'r + ao)]} (2.13) 
Vt 
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where we have dropped the term, 

(47rr')-I exp (ikr') 

f d-r [i(ko .r + 30)] H [ ( K -  k) 2 + (-i3o) V 2 (i~o)] exp  exp  exp  

vl 

with K =  k N  = k(r  112, which is patently of order ( N -  1) 2. 

3o(r) = .i [K(r - fz o s) - k] ds = k ( N -  1) (z + 8 csc 0 - p cot 0) 
0 

and 
V~o = - f l k ( N -  1) csc 0 

[We add that it is tacitly assumed in Oberall (1964) that/~ = 1 and we shall 
do so as well. Thus, for us, 

v = - [ 1  - �89  + t~)] = �89  ~ - 1) = N -  1 

to order ( N -  1).] In comparing with the lower half of  the spinor ~b'b~c(~o), 
which is H'bsc(~o), we find the relations, 

L-g-x- ~- j (2.14a) 

r,. x ,_, 1 , . _ .  x x 

useful. We first consider the lower components of the volume integrals of  
our result, equation (2.11), 

Volume contribution = Jl + ./2 (2.15a) 
with 

= f d~-[(C~+>(r, r')] r kU(r) ~b~+)(r) (2.1 Jl 5b) 
Vl 

and 
= _I d~F~+>(r' r') [(VS)2 - ks -- ilr -- r'12V'(lr -- J,  r'l-2 WS)] ~b~o+)(r) 

Vl 

(2 .15c)  
Jz yields asymptotically 

Jl' exp (ikr') 
,'-,oo" > --4rrr' (J d~'exp[i(k~ + 3~189 + tz)] [~bko(+)r ( )]inside 

Vl 

(2.16) 
with lower component, 

e x ~ r ' )  f 
(J2)loworcomp. 47rr . i  d~-exp [i(ko.r + 3o)]k2(I - C)H'  (2.17) 

VI 
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where E' and H'  are values of  E and H inside the coating. Jl is asymptotically 
given by 

Jt  > ---77 d~rexp[l(ko.r+3o)] fig+k" ,'-,| 4rrr J 
V1 

x k{-[I  - �89 +/z)] + P3 �89 /~)} ~+) r - [Go ( ) ]~~ (2.18) 

which simplifies to 

f exp (ikr') dr exp [i(ko.r + 30)] i~k(e' - 1) (2.19) 
"/~ ~ 4rrr' 

Vx 

on setting/x = 1 explicitly. Additional manipulation involving Maxwell's 
equations yields 

exp (ikr'){ ( 
Jj --~ ~ ~- 3v ~ drexp[i(ko.r + 3o)]k2(1-e')H' 

\ 

+ f dSexp[i(ko.r + 3o) ]k (e ' -  1)/~ • E' t (2.20) 
Sol t 

so that 
exp (ikr') 

I dSexp[i(ko.r + 3 o ) ] k ( d -  I)i~ x E' (2.21) J l  + J2 --~ 4rrr' 
sot 

Next, it is easy to show that the lower components of the surface integral 
o v e r  SI2 , 

Z 3 - 
r'-~eo 

iexp (ikr') f 
| dS{go + kn csc 0[1 - -~-(e' +/~)]} exp [i(ko-r + 30)] 

4rrr ' I t /  

`SI2 

(+) r • n[~bk o ( )]~.~,ao (2.22) 
give 

exp(ikr') f dS{(~ x H) x Vexp [i(ko.r + 30)]} (2.23) (L3)lowereomp. ---> 4rrr ~ 
S12 

The other surface integrals, 

Ll +L2 - i  f dS[ff~+)(r,r')]rn{[~b~+)(r)]out~ia~ ~+) r = -- [~b~ o ( )]~.~iao} (2.24) 
,S01 

yield asymptotically, 

i exp (ikr') f L~ + L~. > dSexp [i(ko.r + 30)] {-kncsc 0[1 - �89 +/~)] 

+ (/Co n + •/r csc 0[1 - �89 + ~)]  - 2~i. ko csc 0[1 - �89 + ~)]} 
(+) 

• n[ffko (rl]~.~d. (2.25) 
28 
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with lower components, 

iexp (ikr') 
dS{-(s x H')  x V -  i[fl x (V x H)] (LI + Lz)lower eomp. "+ 47rr' 

t /  

�9 ~oV6o}exp[i(ko.r + 60)] (2.26) 

Agreement between the two approaches to order ( N -  1) is then finally 
attained by applying Gauss' theorem and Maxwell's equations to 13berall's 
(1964) volume integral 

- (4 , r r ' ) - I  exp (ikr') f drH.VV exp [i(ko .r + 60) 
VI 

transforming it into 

-(41rr') -1 exp(ikr') f dS~" [(V x H) x VV]k-2exp [i(ko.r + 60)] 
601 
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